Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Molecules undergo a structural change to minimize the energy of excited states generated via external stimuli such as light. This is particularly problematic for Cu(I) coordination complexes which are an intriguing alternative to the rare and expensive transition metal containing complexes (e.g., Pt, Ir, Ru, etc.) but suffer from short excited state lifetimes due to D2d to D2 distortion and solvent coordination. Here we investigate strategic surface binding as an approach to hinder this distortion and increase the excited state lifetime of Cu(I) polypyridyl complexes. Using transient absorption spectroscopy, we observe a more than 20-fold increase in excited state lifetime, relative to solution, for a Cu(I) complex that can coordinate to the ZrO2 via both carboxylated ligands. In contrast, the Cu(I) complex that coordinates via only one ligand has a less pronounced enhancement upon surface binding and exhibits greater sensitivity to coordinating solvents. A combination of ATR-IR and polarized visible ATR measurements as well as theoretical calculations suggest that the increased lifetime is due to surface binding which decreases the degrees of freedom for molecular distortion (e.g., D2d to D2), with the doubly bound complex exhibiting the most pronounced enhancement.more » « lessFree, publicly-accessible full text available January 28, 2026
-
Metal ion linked multilayers offer a means of controlling interfacial energy and electron transfer for a range of applications including solar energy conversion, catalysis, sensing, and more. Despite the importance of structure to these interlayer transfer processes, little is known about the distance and orientation between the molecules/surface of these multilayer films. Here we gain structural insights into these assemblies using a combination of UV-Vis polarized visible attenuated total reflectance (p-ATR) and Förster Resonance Energy Transfer (FRET) measurements. The bilayer of interest is composed of a metal oxide surface, phosphonated anthracene molecule, Zn(II) linking ion, and a platinum porphyrin with one (P1), two (P2), or three (P3) phenylene spacers between the chromophoric core and the metal ion binding carboxylate group. As observed by both time-resolved emission and transient absorption, the FRET rate and efficiency decreases with an increasing number of phenylene spacers (P1 > P2 > P3). However, from p-ATR measurements we observe a change in orientation of porphyrins in the bilayer, which inhibits a uniform determination of the orientation factor (κ2) across the series. Instead, we narrow the scope of viable structures by determining the best agreement between experimental and calculated FRET efficiencies. Additionally, we provide evidence that suggests, for the first time, that the bilayer structure is similar on both planar and mesoporous substrates.more » « less
-
Self-assembly of molecular multilayers via metal ion linkages has become an important strategy for interfacial engineering of metalloid and metal oxide (MOx) substrates, with applications in numerous areas, including energy harvesting, catalysis, and chemical sensing. An important aspect for the rational design of these multilayers is knowledge of the molecular structure–function relationships. For example, in a multilayer composed of different chromophores in each layer, the molecular orientation of each layer, both relative to the adjacent layers and the substrate, influences the efficiency of vectorial energy and electron transfer. Here, we describe an approach using UV–vis attenuated total reflection (ATR) spectroscopy to determine the mean dipole tilt angle of chromophores in each layer in a metal ion-linked trilayer self-assembled on indium-tin oxide. To our knowledge, this is the first report demonstrating the measurement of the orientation of three different chromophores in a single assembly. The ATR approach allows the adsorption of each layer to be monitored in real-time, and any changes in the orientation of an underlying layer arising from the adsorption of an overlying layer can be detected. We also performed transient absorption spectroscopy to monitor interlayer energy transfer dynamics in order to relate structure to function. We found that near unity efficiency, sub-nanosecond energy transfer between the third and second layer was primarily dictated by the distance between the chromophores. Thus, in this case, the orientation had minimal impact at such proximity.more » « less
An official website of the United States government
